Labrenzia sp. BM1: A Quorum Quenching Bacterium That Degrades N-acyl Homoserine Lactones via Lactonase Activity

نویسندگان

  • Norshazliza Ab Ghani
  • Siti Nur Maisarah Norizan
  • Xin-Yue Chan
  • Wai-Fong Yin
  • Kok-Gan Chan
چکیده

We report the degradation of quorum sensing N-acylhomoserine lactone molecules by a bacterium isolated from a Malaysian marine water sample. MALDI-TOF and phylogenetic analysis indicated this isolate BM1 clustered closely to Labrenzia sp. The quorum quenching activity of this isolate was confirmed by using a series of bioassays and rapid resolution liquid chromatography analysis. Labrenzia sp. degraded a wide range of N-acylhomoserine lactones namely N-(3-hexanoyl)-L-homoserine lactone (C6-HSL), N-(3-oxohexanoyl)-L-homoserine lactone (3-oxo-C6-HSL) and N-(3-hydroxyhexanoyl)-L-homoserine lactone (3-hydroxy-C6-HSL). Re-lactonisation bioassays confirmed Labrenzia sp. BM1 degraded these signalling molecules efficiently via lactonase activity. To the best of our knowledge, this is the first documentation of a Labrenzia sp. capable of degrading N-acylhomoserine lactones and confirmation of its lactonase-based mechanism of action.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AidP, a novel N-Acyl homoserine lactonase gene from Antarctic Planococcus sp.

Planococcus is a Gram-positive halotolerant bacterial genus in the phylum Firmicutes, commonly found in various habitats in Antarctica. Quorum quenching (QQ) is the disruption of bacterial cell-to-cell communication (known as quorum sensing), which has previously been described in mesophilic bacteria. This study demonstrated the QQ activity of a psychrotolerant strain, Planococcus versutus stra...

متن کامل

Rhodotorula Mucilaginosa, a Quorum Quenching Yeast Exhibiting Lactonase Activity Isolated from a Tropical Shoreline

Two microbial isolates from a Malaysian shoreline were found to be capable of degrading N-acylhomoserine lactones. Both Matrix Assisted Laser Desorption Ionization-Time of Flight-Mass Spectrometry and 18S rDNA phylogenetic analyses confirmed that these isolates are Rhodotorula mucilaginosa. Quorum quenching activities were detected by a series of bioassays and rapid resolution liquid chromatogr...

متن کامل

Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1.

Acyl-homoserine lactones (AHLs) are employed by several Proteobacteria as quorum-sensing signals. Past studies have established that these compounds are subject to biochemical decay and can be used as growth nutrients. Here we describe the isolation of a soil bacterium, Pseudomonas strain PAI-A, that degrades 3-oxododecanoyl-homoserine lactone (3OC12HSL) and other long-acyl, but not short-acyl,...

متن کامل

Characterization and Complete Sequence of Lactonase Enzyme from Bacillus weihenstephanensis Isolate P65 with Potential Activity against Acyl Homoserine Lactone Signal Molecules

Acyl homoserine lactones (AHLs) are the most common class of quorum sensing signal molecules (autoinducers) that have been reported to be essential for virulence of many relevant pathogenic bacteria such as Pseudomonas aeruginosa. New approach for controlling infections of such bacteria is through quorum quenching. In this study, the acyl homoserine lactone inhibitory activity of the crude enzy...

متن کامل

Novel quorum quenching enzymes identified from draft genome of Roseomonas sp. TAS13

Roseomonas sp. strain TAS13 isolated from an activated sludge sample degrades N-acylhomoserine lactones (AHLs) that are widely utilized as a signal in bacterial quorum sensing systems. The draft genome of Roseomonas sp. TAS13 contains 816 contigs (total 5,078,941 bp) which carries 4760 protein-coding genes and 52 tRNA genes (DDBJ/EMBL/GenBank accession numbers BDLP01000001 through BDLP01000816).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2014